x^2=64/5

Simple and best practice solution for x^2=64/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=64/5 equation:



x^2=64/5
We move all terms to the left:
x^2-(64/5)=0
We add all the numbers together, and all the variables
x^2-(+64/5)=0
We get rid of parentheses
x^2-64/5=0
We multiply all the terms by the denominator
x^2*5-64=0
Wy multiply elements
5x^2-64=0
a = 5; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·5·(-64)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*5}=\frac{0-16\sqrt{5}}{10} =-\frac{16\sqrt{5}}{10} =-\frac{8\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*5}=\frac{0+16\sqrt{5}}{10} =\frac{16\sqrt{5}}{10} =\frac{8\sqrt{5}}{5} $

See similar equations:

| -4.65+13.9j=-0.3j+16.91+15.6j | | 4.4x-9.96=2.8 | | -4(d-8)=9d-12-3d-16 | | 5y+3(2y-12)=2y+18 | | 16.05-6.7n=-16.19-17.1n | | 19-n/7=12 | | (25-x^2)^1/2=0 | | -4(y-8)=12 | | (6b)(b=7) | | 5x-x=15 | | -3x–9=12 | | 9x+7x+5+2x+7+5x=9x+42+x+9 | | -14.02+16.8w=18.2w+9.92 | | 2(25-x^2)-2x^2=0 | | 7(3w+5)/3=4 | | x(25)*10=500 | | 1/4z-22/7=5/7 | | (x+3)-51=-x | | 12-(6r)=2r+36 | | -12+16x=4×8x+32+x | | 6d+19-12d=-11-4d | | 1.5x+50=2x+0 | | 1,5x-2=1 | | 1+19k=10+14k+4k | | 5^3x+2=125^1-2x | | 360=4x+2x+3x+6x | | h/1=18+5h/1 | | -8x^2-72x=0 | | 15.4p=14.3p-10.89 | | 5x-1/3-x-4/2=3/4 | | 5x+55=8x-8 | | 97.2=4.7p+8.7p-2.6p |

Equations solver categories